Real-time Implementation and Validation of a New Hierarchical Path Planning Scheme of UAVs via Hardware-in-the-Loop Simulation
نویسندگان
چکیده
We present a real-time hardware-in-the-loop (HIL) simulation environment for the validation of a new hierarchical path planning and control algorithm for a small fixed-wing UAV. The complete control algorithm is validated through on-board, realtime implementation on a small autopilot having limited computational resources. We present two distinct real-time software frameworks for implementing the overall control architecture, including path planning, path smoothing, and path following. We emphasize, in particular, the use of a real-time kernel, which is shown to be an effective and robust way to accomplish real-time operation of small UAVs under non-trivial scenarios. By seamless integration of the whole control hierarchy using the real-time kernel, we demonstrate the soundness of the approach. The UAV equipped with a small autopilot, despite its limited computational resources, manages to accomplish sophisticated unsupervised navigation to the target, while autonomously avoiding obstacles.
منابع مشابه
A New Adaptive Load-Shedding and Restoration Strategy for Autonomous Operation of Microgrids: A Real-Time Study
Islanding operation is one of the main features of a MicroGrid (MG), which is realized regarding the presence of distributed energy resources (DERs). However, in order to deal with the control challenges, which an MG faces during island operation, particularly when the transition is associated with certain excessive load, an efficient control strategy is required. This paper introduces a Centra...
متن کاملHardware in Loop of a Generalized Predictive Controller for a Micro Grid DC System of Renewable Energy Sources
In this paper, a hardware in the loop simulation (HIL) is presented. This application is purposed as the first step before a real implementation of a Generalized Predictive Control (GPC) on a micro-grid system located at the Military University Campus in Cajica, Colombia. The designed GPC, looks for keep the battery bank State of Charge (SOC) over the 70% and under the 90%, what ensures the bes...
متن کاملObstacle Avoidance for Unmanned Sea Surface Vehicles: A Hierarchical Approach
In this paper, we describe a hierarchical system for path planning and obstacle avoidance for totally autonomous Unmanned Sea Surface Vehicles (USSVs). The proposed system is comprised of three major components: a wide-area planner based on the A graph-search algorithm, a local-area planner based on our low-resource path-planning and obstacle avoidance algorithm GODZILA, and an inner-loop nonli...
متن کاملA Synthesizable Hardware Evolutionary Algorithm Design for Unmanned Aerial System Real-Time Path Planning
The main objective of this paper is to detail the development of a feasible hardware design based on Evolutionary Algorithms (EAs) to determine flight path planning for Unmanned Aerial Vehicles (UAVs) navigating terrain with obstacle boundaries. The design architecture includes the hardware implementation of Light Detection And Ranging (LiDAR) terrain and EA population memories within the hardw...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 54 شماره
صفحات -
تاریخ انتشار 2009